Fuzzy K-Means Clustering في محوت

تقدم هذه المدونة مقدمة عن مجموعات Fuzzy K-Means في Apache Mahout.

Fuzzy K-Means هي بالضبط نفس الخوارزمية مثل K-mean ، وهي تقنية تجميع بسيطة شائعة. الاختلاف الوحيد هو ، بدلاً من تخصيص نقطة حصريًا لمجموعة واحدة فقط ، يمكن أن يكون لها نوع من الغموض أو التداخل بين مجموعتين أو أكثر. فيما يلي النقاط الرئيسية التي تصف Fuzzy K-Means:





  • على عكس K-Means ، التي تبحث عن مجموعة صلبة ، حيث تنتمي كل نقطة إلى مجموعة واحدة ، تسعى Fuzzy K-Means إلى المجموعات الأكثر نعومة للتداخل.
  • يمكن أن تنتمي نقطة واحدة في الكتلة الناعمة إلى أكثر من مجموعة ذات قيمة تقارب معينة تجاه كل نقطة.
  • يتناسب التقارب مع مسافة تلك النقطة من النقطه الوسطى العنقودية.
  • على غرار K-Means ، تعمل Fuzzy K-Means على الكائنات التي تم تحديد مقياس المسافة ويمكن تمثيلها في ن- الأبعاد ناقلات الفضاء.

K-Means غامض MapReduce Flow

لا يوجد فرق كبير بين تدفق MapReduce لـ K-Means و K-Means Fuzzy. تنفيذ كلاهما في محوت مماثل.

كيف تفعل السلطة في بيثون

فيما يلي المعلمات الأساسية لتطبيق Fuzzy K-Means:



  • أنت بحاجة إلى مجموعة بيانات Vector للإدخال.
  • يجب أن يكون هناك RandomSeedGenerator لبذر مجموعات k الأولية.
  • لقياس المسافة ، مطلوب قياس SquaredEuclideanDistanceMeasure.
  • قيمة كبيرة لعتبة التقارب ، مثل –cd 1.0 ، إذا تم استخدام القيمة التربيعية لمقياس المسافة
  • قيمة maxIterations القيمة الافتراضية هي -x 10.
  • معامل التطبيع أو عامل التشويش بقيمة أكبر من -m 1.0

لديك سؤال لنا؟ أذكرها في قسم التعليقات وسنعاود الاتصال بك.

كيفية استخدام الذرة مع بيثون

المنشورات ذات الصلة



ثنائي إلى عشري في جافا

التعلم المشرف في أباتشي محوت